Skip to main content

Table of Contents

  1. Introduction: AIACC: Climate Change and Conservation Planning
    1. Chapter1: Evidence for climate change
      1. Slide 1: Introduction: the evidence for anthropogenic climate change
      2. Slide 2: Climate variation
      3. Slide 3 : Climate change
      4. Slide 4: What are we looking for?
      5. Slide 5: Sources of data - instrumental
      6. Slide 6: Temperature
      7. Slide 7: Palaeoclimate reconstruction from proxy data
      8. Slide 8: Palaeoclimatological time scale
      9. Slide 9: Proxy data sources: Ice cores
      10. Slide 10: Proxy data sources: Dendroclimatology
      11. Slide 11: Proxy data sources: Oceanic sediments
      12. Slide 12: Proxy data sources: Other
      13. Slide 13: The role of climate models
      14. Slide 14: Evidence for change
      15. Slide 15: Thermal indicators: Glacial melting
      16. Slide 16: Thermal indicators: Sea ice
      17. Slide 17: Thermal indicators: permafrost
      18. Slide 18: Thermal indicators: Sea level change
      19. Slide 19: Thermal indicators: Sea temperatures
      20. Slide 20: Is oceanic circulation changing?
      21. Slide 21: The greenhouse effect
      22. Slide 22: Climate change forcings
      23. Slide 23: Greenhouse gases: methane
      24. Slide 24: Greenhouse gases: nitrous oxide
      25. Slide 25: Greenhouse gases: carbon dioxide
      26. Slide 26: Greenhouse gases: others
      27. Slide 27: Aerosols
      28. Slide 28: Sulphates and nitrates
      29. Slide 29:Thermal indicators: global air temperature
      30. Slide 30: Changes in precipitation
      31. Slide 31: Climate change indicators: extreme weather
      32. Slide 32: Conclusions?
      33. Slide 33:Test yourself
      34. Slide 34: Links to other chapters
    2. Chapter 2: Global circulation models
      1. Chapter 4: Biodiversity responses to past changes in climate
        1. Chapter 5: Adaptation of biodiversity to climate change
          1. Chapter 6: Approaches to niche-based modelling
            1. Chapter 7: Ecosystem function modelling
              1. Chapter 8: Climate change implications for conservation planning
                1. Chapter 9: The economic costs of conservation response options for climate change
                  1. Course Resources
                    1. Practical: Conservation for Climate Change
                      1. Tests to Assess your Understanding
                        1. How to run a GAM model in R

                          Slide 15: Thermal indicators: Glacial melting

                          Duration: 00:01:16

                          Notes:

                          The change in size of glaciers is measured by their mass balance: the net annual gain/loss of mass at the glacier surface per unit surface area.

                          This is useful because as well as monitoring glacier size, it measures the contribution of glacial melt to sea level rise.

                          The world glacier monitoring service has shown that almost all glaciers worldwide are retreating. (IAHS (ICSI)/UNEP/UNESCO, 1998)

                          A few glaciers in Norway and New Zealand are actually advancing, but this is because of increased precipitation due to warmer weather.

                          Exposure of radiocarbon-dated ancient remains in high saddles in the Alps shows recession is reaching levels not seen for thousands of years

                          This ice has not melted for thousands of years, hence the finding of the 5000 year-old Oetzal "ice man". (IPCC, 2001)

                          The pictures on the left show the retreat of the Grinnell glacier over a 98 year period in Montana's Glacier National park in the United States. By examining and dating the glacial moraines of various glaciers, a comprehensive picture of their movements can be obtained, in this case the accelerating recession of the Gangotri glacier.

                          Furthermore, the final graph details the decreasing net balance for both 30 monitored glaciers and the means of glaciers in 30 different regions monitored by the World Glacier Monitoring Service.

                          REFERENCES:

                          IPCC (2001): Climate Change 2001: The Scientific Basis. (Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P., Dai, X., Maskell, K. and Johnson, C.A., Eds.). Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

                          IAHS(ICSI)/UNEP/UNESCO, 1998: Fluctuations of the Glaciers, 1990-95. W. Haeberli, M. Hoelzle, S. Suter and R. Frauenfelder (eds.), World Glacier Monitoring Service, University and ETH, Zurich.