Skip to main content

Table of Contents

  1. Introduction: AIACC: Climate Change and Conservation Planning
    1. Chapter1: Evidence for climate change
      1. Chapter 2: Global circulation models
        1. Chapter 4: Biodiversity responses to past changes in climate
          1. Chapter 5: Adaptation of biodiversity to climate change
            1. Chapter 6: Approaches to niche-based modelling
              1. Slide 1: Approaches to niche-based modelling - theory and practice
              2. Slide 2: Lecture Structure
              3. Slide 3: Why model species ranges?
              4. Slide 4: Used in response to
              5. Slide 5: Distribution models have been used to predict
              6. Slide 6: They have also been used to...
              7. Slide 7: Principles: Fundamental niche
              8. Slide 8: Principles: Realised niche
              9. Slide 9: Principles: Range edges
              10. Slide 10: Principles: Response curves
              11. Slide 11: Response curves estimation of different models
              12. Slide 12: Specifics: Niche-based modelling
              13. Slide 13: Niche-based modelling - assumptions
              14. Slide 14: Cautionary note on modelling in general
              15. Slide 15: Specifics: variable selection
              16. Slide 16: Example of how direct/indirect variables may affect a plant species
              17. Slide 17: Variables and their selection
              18. Slide 18: Variables determine specificity of model
              19. Slide 19: Environmental Variables
              20. Slide 20: Derived Variables
              21. Slide 21: Recommendations for variable selection
              22. Slide 22: Species distribution datasets
              23. Slide 23: Species distribution datasets...2
              24. Slide 24: Species distribution datasets...3
              25. Slide 25: How do we choose a model type?
              26. Slide 26: Different types of models
              27. Slide 27: Principles
              28. Slide 28: Various decision trees from the literature
              29. Slide 29: Decision trees from the literature (2)
              30. Slide 30: In conclusion
              31. Slide 31: Model calibration and evaluation
              32. Slide 32: Models and their selection - BioClimatic Envelope
              33. Slide 33: Models and their selection - GAM modeling
              34. Slide 34: Models and their selection - GARP
              35. Slide 35: How good are the predictions?
              36. Slide 36: Kappa statistic
              37. Slide 37: Receiver operating characteristic analysis (ROC)
              38. Slide 38: How good are the predictions?
              39. Slide 39: Test yourself
              40. Slide 40 Links to other chapters
            2. Chapter 7: Ecosystem function modelling
              1. Chapter 8: Climate change implications for conservation planning
                1. Chapter 9: The economic costs of conservation response options for climate change
                  1. Course Resources
                    1. Practical: Conservation for Climate Change
                      1. Tests to Assess your Understanding
                        1. How to run a GAM model in R

                          Slide 13: Niche-based modelling - assumptions

                          Duration: 00:01:40

                          Notes:

                          There are a number of assumptions implicit in any model:

                          Environmental factors drive species distribution (at least those factors used are integral in the process)

                          Species are in equilibrium with their environment - if the ecosystem is transitional, then current distributions may not correspond to optimum conditions for a species, but be driven primarily by interspecific interactions.

                          Limiting variables - are they really limiting?

                          Coincidence with climate or climate shift - the ability of a species to move in response to climatic change is assumed to be great.

                          Evidence for species dying/not reproducing due to climate - for climate change models the fact that a species is able to move and will not die out is essential.

                          Collinearity of variables - they may not vary together, and if this is the case, (for instance, rainfall goes down but temperature goes up), the species response may not be as expected.

                          Assumption of assembly rules - it is assumed that the current distribution of species is guided more by the suitability to the current niche than as a result of historical and evolutionary dispersal of the species.

                          Static vs dynamic approaches - is it more appropriate to model for a given period in the present or future and assume that there is a constant trend between these periods, or to model for a number of intermediary steps and assess the suitability of response to the changing conditions.