Skip to main content

Table of Contents

  1. Introduction: AIACC: Climate Change and Conservation Planning
    1. Chapter1: Evidence for climate change
      1. Slide 1: Introduction: the evidence for anthropogenic climate change
      2. Slide 2: Climate variation
      3. Slide 3 : Climate change
      4. Slide 4: What are we looking for?
      5. Slide 5: Sources of data - instrumental
      6. Slide 6: Temperature
      7. Slide 7: Palaeoclimate reconstruction from proxy data
      8. Slide 8: Palaeoclimatological time scale
      9. Slide 9: Proxy data sources: Ice cores
      10. Slide 10: Proxy data sources: Dendroclimatology
      11. Slide 11: Proxy data sources: Oceanic sediments
      12. Slide 12: Proxy data sources: Other
      13. Slide 13: The role of climate models
      14. Slide 14: Evidence for change
      15. Slide 15: Thermal indicators: Glacial melting
      16. Slide 16: Thermal indicators: Sea ice
      17. Slide 17: Thermal indicators: permafrost
      18. Slide 18: Thermal indicators: Sea level change
      19. Slide 19: Thermal indicators: Sea temperatures
      20. Slide 20: Is oceanic circulation changing?
      21. Slide 21: The greenhouse effect
      22. Slide 22: Climate change forcings
      23. Slide 23: Greenhouse gases: methane
      24. Slide 24: Greenhouse gases: nitrous oxide
      25. Slide 25: Greenhouse gases: carbon dioxide
      26. Slide 26: Greenhouse gases: others
      27. Slide 27: Aerosols
      28. Slide 28: Sulphates and nitrates
      29. Slide 29:Thermal indicators: global air temperature
      30. Slide 30: Changes in precipitation
      31. Slide 31: Climate change indicators: extreme weather
      32. Slide 32: Conclusions?
      33. Slide 33:Test yourself
      34. Slide 34: Links to other chapters
    2. Chapter 2: Global circulation models
      1. Chapter 4: Biodiversity responses to past changes in climate
        1. Chapter 5: Adaptation of biodiversity to climate change
          1. Chapter 6: Approaches to niche-based modelling
            1. Chapter 7: Ecosystem function modelling
              1. Chapter 8: Climate change implications for conservation planning
                1. Chapter 9: The economic costs of conservation response options for climate change
                  1. Course Resources
                    1. Practical: Conservation for Climate Change
                      1. Tests to Assess your Understanding
                        1. How to run a GAM model in R

                          Slide 6: Temperature

                          Duration: 00:01:05

                          Notes:

                          Temperature is an essential indicator variable, because it provides us with a direct measurement of the energy in the earth's atmospheric system.

                          Temperature records date from the middle of the 19th century.

                          Surface air temperature is usually measured at weather stations by means of mercury or alcohol thermometers.

                          However, much recent work has been done to allow measurement of the temperature of other atmospheric levels, using the TIROS-N series of satellites.

                          There are now two methods of measuring temperatures at different altitudes: the conventional radiosonde network; and the microwave-sounding unit (MSU) on the TIROS-N series of satellites. The conventional network extends back to 1958 (Angell, 1988) and the MSU data to 1979 (Spencer & Christy, 1990). These satellites are also being gradually replaced by modern satellites with more comprehensive monitoring equipment.

                          REFERENCES:
                          Angell, J.K., 1988. Variations and trends in tropospheric and stratospheric global temperatures, 1958-87. J. Climate, 1, pp. 1296-1313.

                          Spencer, R.W. & Christy, J.R., 1990. Precise monitoring of global surface temperature trends from satellites. Science, 247, pp. 1558-1561.